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ABSTRACT
This paper presents a single-microphone speech dereverber-
ation approach. The technique proposed comprises the room
impulse response estimation followed by an inverse filtering.
The estimation is carried out by identification of function ze-
ros associated with the degradation system (room impulse
response) in speech segments. A comparison between the
cepstrum-based and proposed approaches is shown. Experi-
mental results confirm the effectiveness and applicability of
the new approach for dereverberation of mixed-phase im-
pulse responses.

1. INTRODUCTION

In the transmission path between the source and the receiver,
the speech signal (as any acoustic signal) is subject to modi-
fications. This phenomenon affects the signal characteristics
and it can be subjectively perceived as pleasant or not. In
general, distortions can be grouped into two categories: ad-
ditive and convolutional noise [1]. The latter is related to
the room acoustic properties and/or the impulse response of
the acquisition system [1]. In telephony applications, by us-
ing conventional telephones, the distance between the source
(mouth) and the receiver (microphone) is small. In this way,
distortions associated with the room environment are gener-
ally of low level. In contrast, in hands-free telephones the
microphone is far from the speaker. Therefore, the captured
signal contains the original signal as well as attenuated and
delayed copies of this signal generated by reflections on the
walls and other room surfaces. This signal degradation harms
the intelligibility and comprehension of the spoken message.
In speech recognition applications, system performance can
be seriously affected by signal contamination. In these cases,
dereverberation techniques are fundamental to reduce such
degradation and increase speech intelligibility.

The most well-known dereverberation approaches have
considered signal acquisition by microphone arrays. A clas-
sical technique that uses microphone arrays is the delay and
sum approach and its variants [2]–[4]. In such an approach,
microphones are placed in separate points within a room,
and the speech signal travels different paths until reaching
each microphone. Distance variations can be compensated
through considering adequate delays in a way such that the
sum of microphone signals reinforces the original signal and
reduces the effect of acoustic reflections.

Speech dereverberation by using the signal captured by
a single microphone and without previous knowledge about
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the room impulse response has been a challenging task.
In [5], a single-microphone dereverberation approach is dis-
cussed, in which homomorphic filtering techniques are ap-
plied. In such an approach, it is assumed that the room im-
pulse response and the original speech signal occupy sepa-
rate regions in the cepstral domain. In this case, if complex
cepstral components of the degraded signal, which are asso-
ciated with the reverberation, present an impulsive structure,
a cepstral filtering procedure (using a comb filter) can be con-
sidered for reducing (or even eliminating) the reverberation
effect [5]. An alternative approach, also discussed in [5],
is through the homomorphic filtering of the weighted com-
plex cepstrum obtained from the contaminated signal. In this
way, the components associated with the original speech sig-
nal (low quefrency) are isolated from those corresponding to
the room impulse response (high quefrency). Cepstral anal-
ysis can also be used to estimate the room impulse response,
as discussed in [6]. Satisfactory results related to its esti-
mation are obtained for minimum-phase or mixed-phase re-
sponses which have a few zeros outside the unit circle in the
z-plane [6]. In these research works, a major drawback from
the cepstral approach is the mandatory condition that the
original speech signal and room impulse response must oc-
cupy non-overlapping regions. In general, such an assump-
tion is valid for minimum-phase impulse responses. How-
ever, for mixed-phase responses there are contributions from
the room response in the low quefrency region. In real con-
ditions, acoustic room responses have mixed-phase charac-
teristic [1], restraining the use of dereverberation techniques
based on cepstral analysis.

Another approach recently presented in the literature [7]
takes advantage of the Bayesian framework for estimation
of a source as a time-varying autoregressive (AR) process
and the distortion by an all-pole filter. Although good results
are obtained for gramophone recording restoration, the ap-
plication in room dereverberation is not yet a consolidated
approach.

This paper presents a new approach for estimating the
room impulse response. The main contribution of the pro-
posed technique is in the estimation of acoustic responses
with mixed-phase characteristic. After the estimation of the
room response, dereverberation using inverse response be-
comes a straightforward solution.

This paper is organized as follows. Section 2 presents
the proposed speech dereverberation approach, mainly dis-
cussing the impulse response estimation technique. Experi-
mental results, considering mixed-phase room responses, are
presented in Section 3. Section 4 presents the conclusions
and remarks of this research work.



2. SPEECH DEREVERBERATION

The dereverberation approach used in this work consists of
inverse filtering the distorted speech signal by the impulse re-
sponse of the degradation system (room impulse response).
This process is composed of three phases: (i) room im-
pulse response estimation; (ii) determination of the inverse
response; and (iii) signal filtering by the obtained inverse.
Each of these phases is discussed in detail henceforth.

2.1 Room impulse response estimation
Speech signal distortion caused by reverberation can be mod-
eled through a linear convolution operation in the sequence
domain. Therefore, the modified speech signal y(n), ac-
quired by a single microphone, can be expressed as

y(n) = s(n)∗h(n), (1)

where s(n) represents the original speech signal, h(n) de-
notes the room impulse response, and “∗” characterizes the
linear convolution operation.

In the z-transform domain (1) is given by

Y (z) = S(z)H(z), (2)

where Y (z), S(z), and H(z) denote z-transforms of y(n), s(n)
and h(n), respectively.

Then, representing S(z) and H(z) in the factored form,
we have

S(z) = A
M1

∏
k=1

(1− rkz−1)
M2

∏
k=1

(1− skz−1)(1− s∗kz−1) (3)

H(z) = B
M3

∏
k=1

(1−gkz−1)
M4

∏
k=1

(1−hkz−1)(1−h∗kz−1) (4)

where A represents a gain, rk and {sk,s∗k} represent, respec-
tively, M1 real zeros and M2 complex-conjugate pairs of ze-
ros associated with S(z). In function H(z), B denotes a gain,
gk and {hk,h∗k} represent, respectively, M3 real zeros and M4
complex-conjugate pairs of zeros.

Now, let us consider a speech signal partitioned into N
segments. Each segment must be at least as long as the room
impulse response length. Evaluating Y (z) for each segment,
we note that due to the time-varying nature of the speech sig-
nal represented by S(z), it is unlikely to occur common zeros
between these segments. On the other hand, assuming that
the response h(n) does not change considerably with time,
zeros associated with H(z) are kept in their fixed positions in
the z-plane. Thus, from the zero constellation of Y (z), eval-
uated for a certain number of segments, is possible to iden-
tify a fixed pattern (or with small change). Such a pattern
is related to H(z), which allows to determine an estimate of
h(n). Note that this model is valid if both speaker and micro-
phone are spatially stationary, i.e., we are assuming that both
(source and receiver) are not moving in the room.

Therefore, based on this principle, which is conceptually
simple, the estimation steps of the room impulse response
include: (i) segmentation of the reverberant signal; (ii) root
finding for each segment; (iii) identification of zeros associ-
ated with the room impulse response; and (iv) unfactoring to
obtain an estimate of the room impulse response.

In the segmentation process, considerations related to ze-
ros of Y (z) are still valid if some conditions are fulfilled. As

mentioned previously, each segment should completely con-
tain the response h(n). In addition, to decrease the contam-
ination of the current segment by the “tail” of the previous
segment, the same strategy used in [6] is also applied here.
Such an approach consists of using an exponential window
for reducing the segmentation error. This window must start
at a point after a silence period, overlapping the entire con-
sidered speech segment. Such a weighting window is defined
by w(n) = γn, for 0 < γ < 1.

Since segments are relatively long, high-order polynomi-
als must be evaluated in the factorization process. In this con-
dition, classical root-finder methods like Newton or other ap-
proaches based on eigenvalues of the matrix associated with
the polynomial present serious convergence problems as well
as a considerable computational burden. Thus, an interest-
ing alternative is the use of the Lindsey-Fox root-finder [8],
suitable for high-order polynomials, since such polynomials
exhibit a zero constellation near the unit circle [8]. The cen-
tral idea of this algorithm is the use of fast Fourier transform
(FFT) for polynomial evaluation in concentric rings centered
on the origin and with radius close to 1.

For the identification of the fixed-zero pattern along with
H(z), the proposed strategy is to represent the zeros of Y (z)
(zi = αie jθi) through a quantized singularity array, approach
similar to [9]. This technique presents better results in terms
of accuracy and speed over conventional clustering algo-
rithms [9]. In our work, part of the z-plane is mapped into
a nonlinear grid. This array is initially filled in with zero val-
ues. For each segment analyzed, those cells that match the
location of each zero of the segment are incremented by 1.
Thus, at the end of the evaluation process of N segments, the
cells that represent the fixed zeros of H(z) register a value N.
In this way, the zero identification of H(z) becomes simple
and fast.

Some considerations related to the grid generation are
important to improve the resolution of the identification pro-
cedure. This grid can be represented in either rectangular
or polar coordinates. Since the zeros of Y (z) are more con-
centrated around the unit circle, the magnitude–phase grid
becomes a better alternative. The phase quantization is com-
posed of 2Bp locations, where Bp denotes the number of bits
used to quantize the phase. In a similar way, the magni-
tude quantization presents 2Bm positions, where Bm denotes
the number of bits used to represent the magnitude. For re-
sponses composed of only real coefficients, it is sufficient to
evaluate only the upper half z-plane (phase between 0 and
π). For the problem in question, the phase distribution of
zeros in this interval is considered uniform; thus, we use lin-
ear quantization for the phase. The magnitude of the zeros
of Y (z) has a distribution with concentration around unity.
Then, a nonlinear quantization seems to be more efficient for
the magnitude of the zeros. In this work, we adopt a shifted
tangent function for such quantization. The value of the non-
linear quantized magnitude α̃iq is obtained by the following
mapping relation:

α̃iq =
1

tan(π/D)

[

tan
( π

D

)

+ tan
( π

D
αiq −

π
D

)]

, (5)

where D is a control parameter of the function, and αiq is
the linearly quantized magnitude value αi. Parameter D is
adjusted to concentrate the grid around unity and to allow
values between a minimum α̃min

q and a maximum α̃max
q .



For practical reasons, zeros of the segments are split into
two groups: zeros inside and outside the unit circle. For the
former group, we use the procedure previously described.
For the latter group, the procedure is applied to the zero re-
ciprocals, allowing to consider for both groups 0 ≤ α̃iq ≤ 1.
Note that this strategy is only used for increasing the numer-
ical accuracy in the identification stage. After the identifica-
tion of zeros associated with H(z), the zero reciprocals con-
sidered are remapped outside the unit circle, and an estimated
response ĥ(n) is obtained by unfactoring.

2.2 Inverse response determination and filtering
After the impulse response has been estimated, the inverse
response must be determined for the deconvolution process
of y(n). Since, in general ĥ(n) is of mixed phase, its inverse
cannot be obtained directly, because it could lead to an un-
stable or noncausal system [10]. In this case, if some delay
is tolerated, a least-squares technique can be used [11]. An-
other alternative is the decomposition of ĥ(n) in minimum-
phase and all-pass components by means of cepstral analy-
sis [10], [12]. Using an iterative extraction of the minimum-
phase component as presented in [10], problems associated
with singularities close to the unit circle are overcome.

In the last stage, the estimated signal ŝ(n) can be obtained
by a convolution operation in the sequence domain between
y(n) and the inverse response ĝ(n) or by a simple multipli-
cation operation in the frequency domain. Thus, the latter
reads

Ŝ(e jω) = Y (e jω)Ĝ(e jω), (6)

where Ŝ(e jω), Y (e jω), and Ĝ(e jω) are the Fourier transforms
of ŝ(n), y(n) and ĝ(n), respectively.

3. EXPERIMENTAL RESULTS

The proposed approach is applied and compared with cep-
stral processing [6] (which also uses only one microphone)
in terms of dereverberated speech improvement.

A room impulse response is generated by using a com-
puter implementation of the image method [13]. The room
size is assumed to be 3.54 m (length) × 2.62 m (width) ×
2.97 m (height). In the simulation scenario, the speaker is
located at position (1.9, 1.49, 0.86) (m) and the microphone
is positioned at (0.45, 1.77, 1.74) (m). The walls of the room
have the same reflection coefficient of 0.9, while the coeffi-
cient for the floor and ceiling is 0.8. The sampling rate used
is 8 kHz. Note that the generated response has 158 zeros
outside the unit circle. This response is shown in Fig. 1.
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Figure 1: Room impulse response.

Speech segments consisting of seven isolated digits in
Portuguese, with a total duration of 5 s, sampled at 8 kHz,
are used as the original signal s(n). Fig. 2 shows one of these
speech segments, corresponding to the number eight (“oito”
in Portuguese). Note that such a number of segments is nec-
essary for the cepstral processing, in which a averaging oper-
ation must be accomplished. For our approach, only two or
three segments are sufficient. The reverberant speech signal
y(n) is generated by means of a linear convolution between
s(n) and the impulse response. Fig. 3 now presents the same
speech segment convolved with the room impulse response.
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Figure 2: Segment of original signal.
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Figure 3: Segment of reverberant signal.

In this work, segmentation points are manually selected
(for both approaches), although an automatic segmentation
could be easily carried out.

For each segment, zeros associated with the signals are
determined by using the Lindsey-Fox root-finder [8]. Zeros
of each segment are mapped into the quantization grid. In the
considered example, the parameters used are Bp = 12 bits,
Bm = 10 bits, D = 2.05, α̃min

q = 0 e α̃max
q = 1. Selecting the

cells which register the number of used segments we obtain
the zeros associated with ĥ(n). After unfactoring, ĥ(n) is ob-
tained. From the estimated response, the inverse response is
obtained using the procedure described in [10] and the dere-
verberated signal is determined by the convolution of y(n)
with ĝ(n). Fig. 4 presents the dereverberated signal using the
cepstrum-based processing and Fig. 5 shows the result of the
proposed dereverberation approach.

We also use an objective measure to assess the per-
formance of the proposed approach and compare it to the
cepstrum-based processing. Signal-to-noise ratio (SNR) can
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Figure 4: Dereverberated signal using cepstral processing.
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Figure 5: Dereverberated signal using the proposed ap-
proach.

be interpreted as a direct-to-reverberant signal component ra-
tio (DRR) [4], which is defined as

SNR = 10log10
∑L−1

i=0 [s2(i)]

∑L−1
i=0 [ŝ(i)− s(i)]2

, (7)

where s(n) and ŝ(n) represent the original and processed sig-
nals, respectively, L denotes the length of the signal and i
characterizes the sample index. The DRRs for the reverber-
ant speech, processed speech using cepstrum and the pro-
posed approach are, respectively, -9.34, -3.5, and 17.4 dB.
The proposed approach represents an effective improvement
over the cepstrum-based processing. Note that the cepstral
approach could attain a better result in a scenario involving a
minimum-phase response, but this does not correspond to a
practical situation.

4. CONCLUSIONS

In this paper a new approach for room impulse response es-
timation is proposed. Experimental results show the applica-
bility of our technique in estimating mixed-phase responses
for speech dereverberation applications by using a single mi-
crophone. The proposed approach provides an interesting
solution for speech recognition applications in which the
speech signal is contaminated by reverberation. In further
work, we intend to evaluate the performance in real room re-
sponses considering an automatic speech segmentation strat-
egy.
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