

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

Departamento de Engenharia Elétrica e Eletrônica Campus Trindade - CEP 88040-900 -Florianópolis SC Tel: 48 3721-2260

PLANO DE ENSINO 2024.1

I. IDENTIFICAÇÃO DA DISCIPLINA:							
CÓDIGO	NOME DA DISCIPLINA	HORAS-AULA SEMANAIS		HORAS-AULA SEMESTRAIS			
		TEÓRICAS	PRÁTICAS	HORAS-AULA SEMESTRAIS			
EEL7813	PROJETO NÍVEL I EM ELETRÔNICA I	0	4	72 horas			

II. PROFESSOR(ES) MINISTRANTE(S)

Professor: Sidnei Noceti Filho

III. PRÉ-REQUISITO (Código(s) e nome da(s) disciplina(s)

EEL7061 Eletrônica I

IV. CURSOS PARA OS QUAIS A DISCIPLINA É OFERECIDA

(202) Engenharia Elétrica (235) Engenharia Eletrônica

V. EMENTA

Desenvolvimento de projetos visando integração vertical e horizontal dos conteúdos das disciplinas do curso, assim como um caráter de multidisciplinaridade. Os projetos são realizados em grupos que, normalmente, incluem discentes de fases diferentes, capacitando o estudante para o trabalho em equipes multidisciplinares. Os projetos propostos pelos professores, dentro de sua área de atuação, ao início de cada semestre, são apresentados em Planos de Ensino, divulgados entre o final de um semestre e o início do semestre seguinte. Devem ter interesse social, integrando a universidade com a comunidade externa.

VI. OBJETIVOS

Dar aos alunos noções sobre os tipos de efeitos de Áudio usados por músicos para enriquecer a qualidade harmônica de sons dos mais variados instrumentos musicais, principalmente guitarras, violões com captadores, e contrabaixos elétricos. Também efeitos usados na voz de cantores tais como Eco (Delay) e Reverber,

VII. CONTEÚDO PROGRAMÁTICO

Teoria: Quinze dos mais usados efeitos de áudio. Tremulo, Vibrato, Phaser, Chorus, Flanger, Wah-Wah, Leslie, Oitavador Up e Down, Distortion, Fuzz, Overdrive, Eco, Reverber, Compressor e Equalizadores de áudio. Noções sobre Filtros Analógicos Contínuos, Analógicos Amostrados e Digitais; Osciladores sinusoidais, Componentes passivos, Componentes Ativos Analógicos Contínuos e Analógicos Amostrados e Processamento Digital de Sinais usando Arduino DUE com placa Shield.

Laboratório:

Projeto e montagem de um pedal de efeito em uma caixa de ferro com entrada e saída com fêmeas P10. O tipo de efeito é escolhido pelo aluno na primeira semana do curso com apresentação da proposta de projeto uma semana depois do início do curso.

Itens específicos dentro do conteúdo da Ementa

- 1. Noções Gerais Sobre Efeitos de Áudio Diagramas em Blocos dos Efeitos
- 2. Amplificadores Operacionais, Amplificadores Operacionais de Transcondutância (OTA)
- 3. Resistores Controlados por tensão
- 4. Filtros Passa-Baixa, Passa Alta e Passa-Faixa
- 5. Equalizadores de Fase
- 6. Circuitos Analógicos Amostrados Atrasadores (BBD)
- 7. Osciladores
- 8. Equalizadores de Áudio- Equalizadores de Controle de Tonalidade (Shelving) Equalizadores Bump (Gráfico, Paramétrico e Paragráfico)

Implementações de Circuitos mais simples como por exemplo:

Equalizadores de Áudio: Equalizadores Shelving, Equalizadores Bump, Efeitos: Tremolo, Phaser, Vibrato, Fuzz, Distortion OverDrive, Wah-Wah,

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aulas presenciais no LABEX.

IX. ATIVIDADES PRÁTICAS

Aulas presenciais no LABEX.

X. METODOLOGIA DE AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

O No dia 12/março será dada uma aula uma aula presencial no LABEX explicando e exemplificando os efeitos de áudio. Nesta aula serão colocadas as regras da disciplina, com as datas de entrega de relatórios e/ou circuitos

parciais conforme é descrito no Plano de Ensino. Materiais didáticos São disponibilizados via Moodle ou por email através do Fórum. O aluno escolhe a opção).

1 Proposta de projeto (1 folha) com descrição do projeto a ser realizado (19/março) (5% da nota)

2 Relatório parcial (dia 09/abril) (15% da nota):

Relatório parcial com a descrição do andamento do projeto. Deverá conter:

- 1. Simulação do Circuito
- 2. Resumo do projeto (uma página).3. Introdução.

4. Descrição do projeto

- 5. Revisão bibliográfica (teoria envolvida no projeto, opções comerciais já existentes).
- 6. Estudo geral do funcionamento do circuito
- 7. Cálculos dos componentes de cada um dos blocos de funcionamento do circuito
- 8. Referências bibliográficas.
- 3 Apresentação em protoboard do efeito funcionando (com fêmeas P10 na entrada e saída) (dia 14/maio) (40% da nota).
- 4 Apresentação em do efeito funcionando em caixa metálica (dia 02/julho) (20% da nota):

Funcionamento do circuito em uma caixa metálica tendo internamente uma placa de circuito impresso.

A nota levará em conta a qualidade do efeito obtido (ausência de distorção (quando não for um efeito de distorção, naturalmente), ausência de interferência de 60 Hz e ondas Eletromagnéticas de mais alta frequência) e de ruído interno.

- 5 Entrega do Relatório final por arquivo anexado < >.doc ou docx (dia 02/julho) (10% da nota)
- 6 Inovação, dedicação e placa de circuito impresso (10% da nota).

Serão considerados o grau de inovação, dificuldade e dedicação ao trabalho executado. A dedicação será medida pelo desenvolvimento do trabalho nas aulas de laboratório, mas cumprindo todas as etapas. A placa pode ser feita pelo próprio aluno (artesanal) ou mandada fazer em uma fábrica de placas de circuitos impressos.

XI. REFERÊNCIAS

BIBLIOGRAFIA:

- * S. Noceti Filho "Apostila do Curso" 2015 Disponível em http://www.linse.ufsc.br/~sidnei/.
- *Udo Zölzer, "DAFX Digital Audio Effects", Wiley, 2008
- *Craig Anderton "Electronic Projects for Musicians" Amsco Publications, 1980
- *Sophocles J. Orfanidis "Introduction to Signal Processing" published by Pearson Education, 2009
- *S. Noceti Filho, "Filtros Seletores de Sinais", EDUFSC 4ª Edição, 2020
- *Data-Sheets de diversos Fabricantes
- *Artigos Diversos Obtidos na Internet.

Cronograma

Aula	Data	СН		
1	12/03	4h	Aula no LABEX com apresentação dos 16 tipos de efeitos mais usados e suas variantes	
2	19/03	4h	Continuação da aula anterior e Apresentação da Proposta do projeto (5% da nota)	
3	26/03	4h	Aula presencial no LABEX	
4	02/04	4h	Aula presencial no LABX	
5	09/04	4h	Aula presencial no LABEX Entrega do Relatório Parcial (15% da nota)	
6	16/04	4h	Aula presencial no LABEX:	
7	23/04	4h	Aula presencial no LABEX	
8	30/04	4h	Aula presencial no LABEX	
9	07/05	4h	Protoboard do efeito funcionando (com fêmeas P10 na entrada e saída) (40% da nota)	
10	14/05	4h	Protoboard do efeito funcionando (com fêmeas P10 na entrada e saída) (40% da nota)	
11	21/05	4h	Aula presencial no LABEX	
12	28/05	4h	Aula presencial no LABEX	
13	04/06	4h	Aula presencial no LABEX	
14	11/06	4h	Aula presencial no LABEX	
15	18/06	4h	Aula presencial no LABEX	
16	25/06	4h	Aula presencial no LABEX	
17	02/07	4h	Apresentação em caixa metálica do efeito funcionando (c/ fêmeas P10	
			na entrada e saída) (20% da nota):	
			Entrega do Relatório final por arquivo anexado preferencialmente < > docx (10% da nota)	
			Inovação (10% da nota).	
18	09/7	4h	Revisão e chance de correção para eventuais problemas na placa	